Difference between revisions of "Laser Cutter"

From TinkerMill Wiki
Jump to navigation Jump to search
 
(46 intermediate revisions by 13 users not shown)
Line 1: Line 1:
====== Specifications ======
+
==Overview==
'''Laser Model:''' Rabbit Laser QX-80-1290 80W<br />
+
=== Specifications ===
'''Working area:''' 47.2 x 35.4 inches (1200 x 900 mm)
+
'''Laser Model:''' Rabbit Laser QX-80-1290 (80 Watt)<br />
 +
'''Working area:''' 1200 x 900 mm (47.2 x 35.4 inches)
 
<br />
 
<br />
 
+
=== Parts of the Laser ===
===== Parts of the Laser =====
+
'''80 Watt laser tube''' - The laser tube lives at the back of the bed behind the white metal wall. This generates a beam of unfocused infrared radiation.<br />
'''X/Y carriage''' - Moves the laser head along the X and Y planes (left to right, toward and away.)<br />
+
'''Mirrors''' - Three mirrors are located on the X/Y carriage of this laser. They reflect the beam from the tube to the focal assembly.<br />
'''Honeycomb table''' - disperses any reflected laser energy as well as positioning the engraving material within the proper distance from the laser head.<br />
+
'''Focal assembly''' - This is the business end of the laser. This assembly contains the focusing lens, the auto-focus assembly, red-dot laser indicator, and plumbing for the "air-assist".<br />
'''Z axis Bed of Laser''' - Z axis Bed of Laser - The bed of the laser moves up and down to focus the laser. It can be lowered 10 inches under the laser focal lens.<br />
+
'''Auto-focus assembly''' - This laser is equipped with an auto-focusing attachment that allows it to touch off of a working surface and move itself into an optimal focal range.<br />
'''Laser Tube Water Jacket Chiller''' - A pump moves chilled, distilled water through a glass tube around the laser, cooling it.<br />
+
'''X/Y carriage''' - Horizontal rails allow the focal assembly to move along the X and Y axes (left to right, and front to back).<br />
'''Compressed Air in''' - Air Assist is compressed air that blows onto the cutting point of the laser. It blows away smoke that would otherwise deposit on the mirrors<br />
+
'''Z-axis''' - Four ballscrews allow the bed of the laser to move vertically along the Z axis.<br />
 +
'''Honeycomb table''' - The table supports your material while also allowing exhaust to be pulled through the bed of the laser.<br />
 +
'''Chiller''' - An chiller constantly circulates cooled water through the outer layers of the laser tube to help prevent the tube from overheating and cracking.<br />
 +
'''Compressor / Air-assist''' - A small air compressor maintains constant airflow between the focusing lens and the cutting area. This helps extend the life of our optics and also produces cleaner cuts.<br />
 
<br />
 
<br />
  
===== Machine Safety =====
+
==Safety==
'''Only use materials on the approved list! If your material is not on the list you must get approved before attempting to cut or engrave it!'''
+
=== Machine Safety ===
 +
*'''Only use materials on the approved list! If your material is not on the list you must get approved before attempting to cut or engrave it!'''
  
'''Do not exceed the recommended power settings more than 10 units. If the laser is not cutting at those setting it needs maintenance, please let someone know!'''
+
*'''Do not exceed the recommended power settings more than 10 units. If the laser is not cutting at those settings, it needs maintenance. Please let someone know!'''
  
'''Do not set the power setting above 85%. This extends the life of the laser tube considerably.'''
+
*'''Do not set the power setting above 85%. This extends the life of the laser tube considerably.'''
  
Keep the area around the machine clean and free of unnecessary clutter, combustible materials, explosives, or volatile solvents such as acetone, alcohol, or gasoline.
+
*Keep the area around the machine clean and free of unnecessary clutter, combustible materials, explosives, or volatile solvents such as acetone, alcohol, or gasoline.
  
 
The smoke generated from cutting materials deposit particles of residue on the lenses and mirrors of the laser. For the laser to work at its full potential proper maintenance is necessary. This is done by trained Tinkermill members so you don’t have to.
 
The smoke generated from cutting materials deposit particles of residue on the lenses and mirrors of the laser. For the laser to work at its full potential proper maintenance is necessary. This is done by trained Tinkermill members so you don’t have to.
  
The machine is regularly check and maintained but if you notice a loss in power or performance you can help by alerting a qualified Tinkermill member. If the laser does not seem to be cutting at its full potential please alert a member who has been trained in laser maintenance. If none are available please submit an email to '''info@tinkermill.com''' with a description of what you observed.
+
The machine is regularly checked and maintained but if you notice a loss in power or performance you can help by alerting a qualified TinkerMill member. If the laser does not seem to be cutting at its full potential please alert a member who has been trained in laser maintenance. If none are available please submit an email to '''info@tinkermill.com''' with a description of what you observed.
 
Do not attempt to clean the optics or service the machine without training!
 
Do not attempt to clean the optics or service the machine without training!
  
Keep a properly maintained and inspected fire extinguisher on hand.
+
 
  
 
Keep all the lids closed while the machine is in use, including those on the sides of the machine.<br />
 
Keep all the lids closed while the machine is in use, including those on the sides of the machine.<br />
 
<br />
 
<br />
  
===== Fire Safety =====
+
=== Fire Safety ===
Laser cutting and engraving systems represent a significant fire hazard. The materials on the approved list most likely to flare up are paper based products such as cardboard. The most common cause of flare-ups is cutting too slowly.<br />
+
Laser cutting and engraving systems represent a significant fire hazard. <br />
 +
The materials on the approved list most likely to flare up are paper based products such as cardboard. The most common cause of flare-ups is cutting too slowly.<br />
 +
Keep a properly maintained and inspected fire extinguisher on hand.
 
<br />
 
<br />
  
===== Material Selection =====
+
== Material Selection ==
 
Our laser cutter is capable of cutting and engraving a wide range of materials. To help ensure that the laser stays in a working condition we ask that you only using materials on the approved material list. If you would like to use a material not found on the list (and it isn't on the do-not-cut list) please contact a shop captain and be prepared to provide a sample of your material.
 
Our laser cutter is capable of cutting and engraving a wide range of materials. To help ensure that the laser stays in a working condition we ask that you only using materials on the approved material list. If you would like to use a material not found on the list (and it isn't on the do-not-cut list) please contact a shop captain and be prepared to provide a sample of your material.
  
Line 44: Line 51:
 
'''Do not cut any material that contains chloride as it is corrosive to both the machine and your body! These include PVC and vinyl.'''
 
'''Do not cut any material that contains chloride as it is corrosive to both the machine and your body! These include PVC and vinyl.'''
  
'''Approved Materials'''<br />
+
===Approved Materials===
Acrylic Plastic<br />
+
A new settings page is being created here: [[Laser Cutter Settings]]
Plexiglass (PMMA)<br />
+
 
Delrin Plastic<br />
+
<!--
Kapton High Temperature Tape<br />
+
{| class="wikitable"
PETG Plastic<br />
+
!Material
Styrene Plastic<br />
+
!Cut <br /> Recommended Speed
Styrene Foam (melts very quickly)<br />
+
!Cut <br /> Recommended Power
Depron Foam<br />
+
!Cut <br /> Passes
EPM Foam (Ethylene propylene rubber)<br />
+
!Engrave <br /> Recommended Speed
Cloths (leather, suede, felt, hemp, cotton)<br />
+
!Engrave <br /> Recommended Power
Magnetic sheets<br />
+
|-
Paper, Cardboard, Cardstock<br />
+
|Acrylic Plastic
Rubbers (those that are free of chlorine)<br />
+
|-
Woods (balsa, birch, poplar, red oak, cherry, holly, etc.)<br />
+
|Plexiglass (PMMA)
Cork
+
|-
Coroplast
+
|Delrin Plastic
Carbon Fiber Mats/Weave '''that has not had the epoxy applied!'''<br />
+
|-
Baltic Birch Plywood<br />
+
|Kapton High Temperature Tape
Back of Mirrors (engrave only)<br />
+
|-
Anodized Aluminum (engrave only)<br />
+
|PETG Plastic
Powder Coated Metal (engrave only)<br />
+
|-
Glass (engrave only)<br />
+
|Styrene Plastic
Ceramic Tile (engrave only)<br />
+
|-
Stone, Marble, Granite (engrave only)<br />
+
|Styrene Foam (melts very quickly)
 +
|-
 +
|Depron Foam
 +
|-
 +
|EPM Foam (Ethylene propylene rubber)
 +
|-
 +
|Cloths (leather, suede, felt, hemp, cotton)
 +
|-
 +
|Magnetic sheets
 +
|-
 +
|Paper, Cardboard, Cardstock
 +
|-
 +
|Rubbers (those that are free of chlorine)
 +
|-
 +
|Woods (balsa, birch, poplar, red oak, cherry, holly, etc.)
 +
|-
 +
|Cork
 +
|-
 +
|Coroplast
 +
|-
 +
|Carbon Fiber Mats/Weave '''that has not had the epoxy applied!'''
 +
|-
 +
|Baltic Birch Plywood
 +
|-
 +
|Back of Mirrors '''(engrave only)''' ||0 ||0
 +
|-
 +
|Anodized Aluminum '''(engrave only)''' ||0 ||0
 +
|-
 +
|Powder Coated Metal '''(engrave only)''' ||0 ||0
 +
|-
 +
|Glass '''(engrave only)''' ||0 ||0
 +
|-
 +
|Ceramic Tile '''(engrave only)''' ||0 ||0
 +
|-
 +
|Stone, Marble, Granite '''(engrave only)''' ||0 ||0
 +
|}
 +
-->
 +
 
 +
===DO NOT CUT/ENGRAVE===
 +
{| class="wikitable"
 +
!Material
 +
!Hazard
 +
|-
 +
|Polycarbonate ||Fire hazard
 +
|-
 +
|Lexan ||Fire hazard
 +
|-
 +
|PVC ||Chlorine
 +
|-
 +
|Cintra ||Chlorine
 +
|-
 +
|Vinyl ||Chlorine
 +
|-
 +
|ABS Plastic ||Fire hazard, difficult to clean up
 +
|-
 +
|Pleather / Faux Leather ||Chlorine
 +
|-
 +
|Epoxy Coated Fiberglass / Composites ||Noxious fumes from epoxy
 +
|-
 +
|Printed Circuit Boards ||Noxious fumes
 +
|-
 +
|Epoxy Coated Carbon Fiber ||Noxious fumes
 +
|-
 +
|HPDE / Milk Bottle Plastic ||Fire hazard
 +
|-
 +
|Any Material Containing Chlorine || Chlorine
 +
|}
  
'''DO NOT CUT/ENGRAVE'''<br />
+
==Usage==
Polycarbonate (fire hazard)<br />
+
=== Scheduling Time on the Laser Cutter ===
Lexan (fire hazard)<br />
+
The laser cutter is a popular tool here at TinkerMill, thus a [[Resource Scheduling| Resource scheduling and reservation system ]] has been set up with [http://goo.gl/da2yxL Google Calendar].
PVC (chlorine)<br />
+
 
Cintra (chlorine)<br />
+
=== Preparing Vector Files for Cutting and Engraving ===
Vinyl (chlorine)<br />
+
The upgrade of the 80W laser cutter has brought on a new laser cutter software called RDWorks. This program can be downloaded for free so makers can prepare their cuts on their own computers.
ABS Plastic (fire Hazard, difficult to clean up)<br />
+
Link to RDWorks:
Pleather / Faux Leather (chlorine)<br />
+
https://rabbitlaserusa.com/DriverDisk/Ruida/RDWorks/
Epoxy Coated Fiberglass / Composites (noxious fumes from epoxy)<br />
+
 
Printed Circuit Boards (noxious fumes)<br />
+
==== Using RDWorks for Laser Cutting ====
Epoxy Coated Carbon Fiber (noxious fumes)<br />
+
* The file format native to RDWorks is .rld
HPDE / Milk Bottle Plastic (fire hazard)<br />
+
* The laser cutter software imports DXF (Drawing Exchange Format) as its vector format
Any Material Containing Chlorine<br />
+
** DXF files should be saved in R14 version
<br />
+
** The laser cutter software expects metric measurements. Export at an Artwork Scale of 1 unit = 1mm.
 +
** If the RDWorks software is in a different unit system, change it in Config(S)>>File Para Setting>> '''DXF Unit''' (MM or Inch). You can also change '''Unit Type''' and '''Velocity Unit'''. But please change it back to MM when done.
 +
** Adobe Illustrator and Inkscape can convert vector file types to the DXF format.
 +
** DXFs created with CAD software, such as Autocad, often has double lines or other undesirable artifacts like water marks from the conversion process. You should always open these files in vector drawing software and clean up any of these erroneous paths.
 +
** Make note of your document's size (in millimeters) as this will be useful later if resizing is needed in the laser cutting software.
 +
* The laser cutter software can import BMP or PNG as its raster format.
 +
** Raster formats are pixel-based formats used for etching pictures.
  
===== Preparing Vector Files for Cutting and Engraving =====
+
<!-- RabbitLaser is for different laser cutters, not the big one. -->
* The laser cutter software uses DXF (Drawing Exchange Format) as its vector format
+
<!--
* DXF files should be saved in R14 version
+
==== Using RabbitLaser for Laser Cutting ====
* The laser cutter software expects metric measurements. Export at an Artwork Scale of 1 unit = 1mm
 
* Adobe Illustrator and Inkscape can convert vector file types to the DXF
 
* DXFs created with CAD software, such as Autocad, often has double lines or other undesirable artifacts from the conversion process. You should always open these files in vector drawing software and clean up any of these erroneous paths
 
* Make note of your documents size (in millimeters) as this will be useful later if resizing is needed in the LaserCut software
 
 
* Closed paths that are put on an Engrave layer in the RabbitLaser software will appear as solid areas of engraving.
 
* Closed paths that are put on an Engrave layer in the RabbitLaser software will appear as solid areas of engraving.
  
====== With Adobe Illustrator ======
+
-->
 +
 
 +
==== Preparing Files With Adobe Illustrator ====
 +
<!--
 
* Change the document's units to metric (Edit > Preferences > Units > General)
 
* Change the document's units to metric (Edit > Preferences > Units > General)
 
* All paths should have zero fill. Filled shapes will produce a "Hatch" error in the RabbitLaser software.
 
* All paths should have zero fill. Filled shapes will produce a "Hatch" error in the RabbitLaser software.
 +
* When saving, uncheck the "Compression" checkbox that comes up in the second "Save" screen
 +
-->
 +
 +
==== Preparing Files With Inkscape ====
 +
[[Preparing Files With Inkscape]]
  
====== With Inkscape ======
+
=== Preparing Raster Images for Engraving ===
Both Inkscape 0.48 and 0.91 should be installed on the workstation. A few tips:
+
The RDWorks software has advanced features for converting images to grayscale or black/white. Click the BMP icon in the top toolbar for those options.
* Inkscape 0.91 has a bug that prevents it from saving circles and ellipses to .dxf format properly. You may need to use another tool (such as 0.48), or recreate them in the LaserCut software.  This is expected to be fixed in version 0.92.  See here: https://bugs.launchpad.net/inkscape/+bug/1489320
+
<!--The PhotoGrav software can be used to convert raster images into a format compatable with the RabbitLaser software. This is installed on the computer and can be found locked to the task bar (the sun icon.)<br />-->
* If you are having trouble with exporting a closed shape, check to ensure that there is no "fill".  Some users have reported this causing them issues in the past.
 
* Combining all vectors into a single layer before export may yield better results.
 
===== Preparing Raster Images for Engraving =====
 
The PhotoGrav software can be used to convert raster images into a format compatable with the RabbitLaser software. This is installed on the computer and can be found locked to the task bar (the sun icon.)<br />
 
 
<br />
 
<br />
  
===== Operating the Laser =====
+
=== Operating the Laser ===
# Turn the laser on with the key. Check to ensure that the Chiller, Air Assist Pump, and Ventilation Fan have all turned on.
+
'''''The laser cutter controller and software was upgraded in early 2018. A re-certification is required for any members trained prior to 2018.'''''
# Press the “XY-0” button to prevent the laser head from leaving the workable space.
+
 
# Start the LaserCut software.
+
 
# Click “File>Import” to navigate to and select your file.
+
# Ensure that you have the correct file, dimensions, and cut/engrave settings for your job in RDWorks
# Select paths and assign colors to those that will have separate power and speed settings.
+
# Turn the laser on using the key on the main control panel. Check to ensure that the Chiller, Air Assist Pump, and Ventilation Fan have all turned on.
# Set the power and speed settings for each layer (color). Please reference the advice power and speed settings sheet that is near the computer.
+
# Wait for the laser to complete it's initialization process and has stopped moving prior to loading any materials into the bed.
# Layers will be cut/engraved in order from top to bottom. They can be arranged by pressing the "Up" and "Down" buttons underneath the Layers pallet
+
# In RDWorks use the "Download" button in the lower right corner of the screen to send your file to the cutter. Please leave "DEFAULT" as the name of the file you send to the laser, and overwrite any existing "DEFAULT" file.
# Check the size of your artwork by selecting everything and pressing Ctrl+G. This will show you the selections size (in millimeters) and allows for its adjustment.
+
# Scan your badge using the [[TinkerAccess]] kiosk above the main control panel. The laser tube cannot fire if a certified user is not signed in. If additional time is required users may re-scan at any point to extend the session.
# Although not required, it is wise to save the file at this point to the computer or your thumbdrive. This will save the file in a .MOL format that will retain your layers as well as speed and power settings.
 
# Ensure that the origin, or starting point, of your artwork is set to the upper left corner by clicking on "Laser" > "Set laser origin" and selecting "LEFT-TOP."
 
## [[File:laser_origin_1.png|200px|Setting laser origin in Rabbit Laser software.]]
 
## [[File:laser_origin_2.png|200px|Setting laser origin in Rabbit Laser software.]]
 
# The screen on the laser cutter should now display the name of your file
 
 
# Place your material onto the laser cutter bed.
 
# Place your material onto the laser cutter bed.
# Use the laser cutter’s up/down, left/right keys to move the head of the laser over your material. If the laser head doesn’t move when you press the buttons try hitting the “ESC” and try again.  
+
# The directional keys on the key pad are used to position the laser cutter's focal head. If the bed height needs to be adjusted this can be done by pressing the "Z/U" button on the keypad and with "Z MOVE" highlighted pressing the Right arrow to move the bed down, or the Left arrow to move the bed up.
# Press the “TEST” button. The laser head will travel in a rectangular pattern that represents the boundaries of your file. It is important that you know your origin point before testing or the head of the laser may ignore its limit switches and slam into the side of the machine.
+
# Once the focal head is correctly positioned relative to your material, please the "ORGIN" button on the keypad to lock in it's current location as the origin point for your job.
# Press the “Z-0” button to automatically focus the laser. The bed will rise until a limit switch immediately left of the laser head is activated, it will then move back down to the proper focal distance.  
+
# At this point "FRAME" can be used to physically outline the outer-bounds of the work area for your job. The laser head will travel in a rectangular pattern that represents the boundaries of your file.
# You are ready to cut/engrave! Press the “START” key to start the laser.
+
# Now move the laser head so that the auto-focus probe is positioned directly above your material. Press the "Z/U" button and navigate to "AUTOFOCUS" and press "ENTER". It is '''crucial''' that the probe contact your material or the laser head may impact the bed and compress the focal tube. If you are going to miss your material with the auto-focus probe use the "ESC" key to stop the auto-focus process, or use the emergency stop to prevent the crash.
 +
# You are now ready to cut/engrave! Press the “START” key to start the laser from your previously declared origin point.
 +
# Monitor your job closely. If you want to inspect the quality of your cuts and engraves mid run you may do so by pressing the "Stare-Pause" button. If you open the lid without pausing the run it will interrupt the beam but continue it's motion.
 +
# Listen for a loud beep to indicate that your job is done.
 
# Remove your material as well as any left over pieces. Don’t worry about scrap that falls through the the honeycomb, that gets cleaned out during maintenance. Do, however, remove any scrap that sits on or above the honeycomb that could obstruct material placed into the machine later. The vacuum cleaner next to the laser cutter works great for sucking up loose bits!
 
# Remove your material as well as any left over pieces. Don’t worry about scrap that falls through the the honeycomb, that gets cleaned out during maintenance. Do, however, remove any scrap that sits on or above the honeycomb that could obstruct material placed into the machine later. The vacuum cleaner next to the laser cutter works great for sucking up loose bits!
 +
# Donate money for the laser cutter based on the suggested rate and the elapsed time it took to run, according to the time displayed on the laser cutter.
  
===== Cleaning and Maintenance =====
+
=== Using the Rotary Attachment ===
 +
This process is documented on [[Laser Rotary Attachment|a page of its own]].
 +
 
 +
== Cleaning and Maintenance ==
 
Please refer to http://www.rabbitlaserusa.com/Manuals/LaserMaintenanceSchedule.pdf for maintenance instructions.<br />
 
Please refer to http://www.rabbitlaserusa.com/Manuals/LaserMaintenanceSchedule.pdf for maintenance instructions.<br />
  
Due to the delicate nature of the laser cutter, maintenance is to only be performed by trained members. Please do not attempt to clean or repair the machine without this one-on-one training and specific authorization. If you believe that the laser needs cleaning or other maintenance please send a message to info@tinkermill.org.
+
Due to the delicate nature of the laser cutter, maintenance is to only be performed by trained members. Please do not attempt to clean or repair the machine without this one-on-one training and specific authorization. If you believe that the laser needs cleaning or other maintenance please send a message to [mailto:info@tinkermill.org info@tinkermill.org].
  
 
==== Lens Damage Examples ====
 
==== Lens Damage Examples ====
[[File:lens_damage_examples.png|Lens Damage Examples]]
+
[[File:lens_damage_examples.png|720px|Lens Damage Examples]]
  
 
==== Focal Length Sensor Plunger ====
 
==== Focal Length Sensor Plunger ====
Line 140: Line 221:
 
[[File:focal_length_sensor_-_before_after.png]]
 
[[File:focal_length_sensor_-_before_after.png]]
  
==== Design Resources ====
+
==Resources==
Rabbit Laser Manuals and Tutorials<br />
+
 
http://www.rabbitlaserusa.com/ManualsTutorials.html
+
=== Design Resources ===
 +
*Rabbit Laser Manuals and Tutorials<br />http://www.rabbitlaserusa.com/ManualsTutorials.html
 +
 
 +
*Example Projects<br />
 +
**http://epiloglaser.com/resources/sample-club.htm<br />
 +
**http://www.rabbitlaserusa.com/DownloadableProjects.html
 +
 
 +
*Wood Inlay<br />
 +
**[[Laser_Cut_Inlay|Tutorial for creating inlay drawings using Inkscape]]
 +
 
 +
*Living (or Lattice) Hinges<br />
 +
**http://www.deferredprocrastination.co.uk/blog/category/def-proc/lattice-hinges/
 +
**http://www.epiloglaser.com/resources/sample-club/living-hinge-laser-cutting.htm
 +
 
 +
*Software
 +
**[http://www.inkscape.org/en|Inkscape Free Vector Drawing Software]<br />
 +
**[http://www.all-silhouettes.com/|Free Vector Images]<br />
 +
**[http://www.makercase.com/|Tabbed Box Generator]<br />
 +
**[http://www.woodgears.ca/gear_cutting/template.html|Gear Template Generator]<br />
 +
 
 +
=== Material Resources ===
  
Example Projects<br />
+
*Rubber Stamp Materials - [http://www.rubberstampmaterials.com/laserengravablerubberandpolymer.aspx|Rubber Stamp Material - Laser Safe]
http://epiloglaser.com/resources/sample-club.htm<br />
 
http://www.rabbitlaserusa.com/DownloadableProjects.html
 
  
Living (or Lattice) Hinges<br />
+
*[[Sourcing Materials#Plastics|Plastic Vendors]]
http://www.deferredprocrastination.co.uk/blog/category/def-proc/lattice-hinges/
 
http://www.epiloglaser.com/resources/sample-club/living-hinge-laser-cutting.htm
 
  
[http://www.inkscape.org/en|Inkscape Free Vector Drawing Software]<br />
+
*[[Sourcing Materials#Woodworking|Birch Plywood]]
[http://www.all-silhouettes.com/|Free Vector Images]<br />
 
[http://www.makercase.com/|Tabbed Box Generator]<br />
 
[http://www.woodgears.ca/gear_cutting/template.html|Gear Template Generator]<br />
 
  
==== Material Resources ====
+
=== Cool Videos ===
 +
*[https://www.youtube.com/watch?v=mFMmaDzp4BY&feature=youtu.be CNC Laser Working Process cuttings sheet metal]<br />
  
[http://www.rubberstampmaterials.com/laserengravablerubberandpolymer.aspx|Rubber Stamp Material - Laser Safe]<br /><br />
 
  
'''Plastics'''<br />
 
Colorado Plastics 4th Friday Remnant Sale<br />
 
2015 500 S. Arthur Ave.<br />
 
Louisville, CO, 80027<br />
 
1-800-398-9271 or 303-443-9271<br />
 
http://www.coloradoplastics.com/retail/fourth-friday-half-price-remnant-sale/<br /><br />
 
  
'''Birch Plywood'''<br />
+
[[Category:Laser Cutter]]
Stan's Hardwood<br />
+
[[Category:Rapid Prototyping]]
617 1st Ave. Longmont, Colorado 80501<br />
+
Back to: [[Main Page]]
(303) 772-2418<br />
 
Tue-Fri 9-5, Sat 9-3, Closed: Sun & Mon<br />
 
http://www.longmonthardwood.com/
 

Latest revision as of 20:28, 2 June 2021

Overview[edit]

Specifications[edit]

Laser Model: Rabbit Laser QX-80-1290 (80 Watt)
Working area: 1200 x 900 mm (47.2 x 35.4 inches)

Parts of the Laser[edit]

80 Watt laser tube - The laser tube lives at the back of the bed behind the white metal wall. This generates a beam of unfocused infrared radiation.
Mirrors - Three mirrors are located on the X/Y carriage of this laser. They reflect the beam from the tube to the focal assembly.
Focal assembly - This is the business end of the laser. This assembly contains the focusing lens, the auto-focus assembly, red-dot laser indicator, and plumbing for the "air-assist".
Auto-focus assembly - This laser is equipped with an auto-focusing attachment that allows it to touch off of a working surface and move itself into an optimal focal range.
X/Y carriage - Horizontal rails allow the focal assembly to move along the X and Y axes (left to right, and front to back).
Z-axis - Four ballscrews allow the bed of the laser to move vertically along the Z axis.
Honeycomb table - The table supports your material while also allowing exhaust to be pulled through the bed of the laser.
Chiller - An chiller constantly circulates cooled water through the outer layers of the laser tube to help prevent the tube from overheating and cracking.
Compressor / Air-assist - A small air compressor maintains constant airflow between the focusing lens and the cutting area. This helps extend the life of our optics and also produces cleaner cuts.

Safety[edit]

Machine Safety[edit]

  • Only use materials on the approved list! If your material is not on the list you must get approved before attempting to cut or engrave it!
  • Do not exceed the recommended power settings more than 10 units. If the laser is not cutting at those settings, it needs maintenance. Please let someone know!
  • Do not set the power setting above 85%. This extends the life of the laser tube considerably.
  • Keep the area around the machine clean and free of unnecessary clutter, combustible materials, explosives, or volatile solvents such as acetone, alcohol, or gasoline.

The smoke generated from cutting materials deposit particles of residue on the lenses and mirrors of the laser. For the laser to work at its full potential proper maintenance is necessary. This is done by trained Tinkermill members so you don’t have to.

The machine is regularly checked and maintained but if you notice a loss in power or performance you can help by alerting a qualified TinkerMill member. If the laser does not seem to be cutting at its full potential please alert a member who has been trained in laser maintenance. If none are available please submit an email to info@tinkermill.com with a description of what you observed. Do not attempt to clean the optics or service the machine without training!


Keep all the lids closed while the machine is in use, including those on the sides of the machine.

Fire Safety[edit]

Laser cutting and engraving systems represent a significant fire hazard.
The materials on the approved list most likely to flare up are paper based products such as cardboard. The most common cause of flare-ups is cutting too slowly.
Keep a properly maintained and inspected fire extinguisher on hand.

Material Selection[edit]

Our laser cutter is capable of cutting and engraving a wide range of materials. To help ensure that the laser stays in a working condition we ask that you only using materials on the approved material list. If you would like to use a material not found on the list (and it isn't on the do-not-cut list) please contact a shop captain and be prepared to provide a sample of your material.

You can help by testing your material according to the “IDENTIFICATION OF POLYMERS” booklet accompanying the laser cutter: http://www.chymist.com/Polymer%20Identification.pdf http://makezine.com/2011/09/22/identifying-unknown-plastics/

Do not cut any material that contains chloride as it is corrosive to both the machine and your body! These include PVC and vinyl.

Approved Materials[edit]

A new settings page is being created here: Laser Cutter Settings


DO NOT CUT/ENGRAVE[edit]

Material Hazard
Polycarbonate Fire hazard
Lexan Fire hazard
PVC Chlorine
Cintra Chlorine
Vinyl Chlorine
ABS Plastic Fire hazard, difficult to clean up
Pleather / Faux Leather Chlorine
Epoxy Coated Fiberglass / Composites Noxious fumes from epoxy
Printed Circuit Boards Noxious fumes
Epoxy Coated Carbon Fiber Noxious fumes
HPDE / Milk Bottle Plastic Fire hazard
Any Material Containing Chlorine Chlorine

Usage[edit]

Scheduling Time on the Laser Cutter[edit]

The laser cutter is a popular tool here at TinkerMill, thus a Resource scheduling and reservation system has been set up with Google Calendar.

Preparing Vector Files for Cutting and Engraving[edit]

The upgrade of the 80W laser cutter has brought on a new laser cutter software called RDWorks. This program can be downloaded for free so makers can prepare their cuts on their own computers. Link to RDWorks: https://rabbitlaserusa.com/DriverDisk/Ruida/RDWorks/

Using RDWorks for Laser Cutting[edit]

  • The file format native to RDWorks is .rld
  • The laser cutter software imports DXF (Drawing Exchange Format) as its vector format
    • DXF files should be saved in R14 version
    • The laser cutter software expects metric measurements. Export at an Artwork Scale of 1 unit = 1mm.
    • If the RDWorks software is in a different unit system, change it in Config(S)>>File Para Setting>> DXF Unit (MM or Inch). You can also change Unit Type and Velocity Unit. But please change it back to MM when done.
    • Adobe Illustrator and Inkscape can convert vector file types to the DXF format.
    • DXFs created with CAD software, such as Autocad, often has double lines or other undesirable artifacts like water marks from the conversion process. You should always open these files in vector drawing software and clean up any of these erroneous paths.
    • Make note of your document's size (in millimeters) as this will be useful later if resizing is needed in the laser cutting software.
  • The laser cutter software can import BMP or PNG as its raster format.
    • Raster formats are pixel-based formats used for etching pictures.


Preparing Files With Adobe Illustrator[edit]

Preparing Files With Inkscape[edit]

Preparing Files With Inkscape

Preparing Raster Images for Engraving[edit]

The RDWorks software has advanced features for converting images to grayscale or black/white. Click the BMP icon in the top toolbar for those options.

Operating the Laser[edit]

The laser cutter controller and software was upgraded in early 2018. A re-certification is required for any members trained prior to 2018.


  1. Ensure that you have the correct file, dimensions, and cut/engrave settings for your job in RDWorks
  2. Turn the laser on using the key on the main control panel. Check to ensure that the Chiller, Air Assist Pump, and Ventilation Fan have all turned on.
  3. Wait for the laser to complete it's initialization process and has stopped moving prior to loading any materials into the bed.
  4. In RDWorks use the "Download" button in the lower right corner of the screen to send your file to the cutter. Please leave "DEFAULT" as the name of the file you send to the laser, and overwrite any existing "DEFAULT" file.
  5. Scan your badge using the TinkerAccess kiosk above the main control panel. The laser tube cannot fire if a certified user is not signed in. If additional time is required users may re-scan at any point to extend the session.
  6. Place your material onto the laser cutter bed.
  7. The directional keys on the key pad are used to position the laser cutter's focal head. If the bed height needs to be adjusted this can be done by pressing the "Z/U" button on the keypad and with "Z MOVE" highlighted pressing the Right arrow to move the bed down, or the Left arrow to move the bed up.
  8. Once the focal head is correctly positioned relative to your material, please the "ORGIN" button on the keypad to lock in it's current location as the origin point for your job.
  9. At this point "FRAME" can be used to physically outline the outer-bounds of the work area for your job. The laser head will travel in a rectangular pattern that represents the boundaries of your file.
  10. Now move the laser head so that the auto-focus probe is positioned directly above your material. Press the "Z/U" button and navigate to "AUTOFOCUS" and press "ENTER". It is crucial that the probe contact your material or the laser head may impact the bed and compress the focal tube. If you are going to miss your material with the auto-focus probe use the "ESC" key to stop the auto-focus process, or use the emergency stop to prevent the crash.
  11. You are now ready to cut/engrave! Press the “START” key to start the laser from your previously declared origin point.
  12. Monitor your job closely. If you want to inspect the quality of your cuts and engraves mid run you may do so by pressing the "Stare-Pause" button. If you open the lid without pausing the run it will interrupt the beam but continue it's motion.
  13. Listen for a loud beep to indicate that your job is done.
  14. Remove your material as well as any left over pieces. Don’t worry about scrap that falls through the the honeycomb, that gets cleaned out during maintenance. Do, however, remove any scrap that sits on or above the honeycomb that could obstruct material placed into the machine later. The vacuum cleaner next to the laser cutter works great for sucking up loose bits!
  15. Donate money for the laser cutter based on the suggested rate and the elapsed time it took to run, according to the time displayed on the laser cutter.

Using the Rotary Attachment[edit]

This process is documented on a page of its own.

Cleaning and Maintenance[edit]

Please refer to http://www.rabbitlaserusa.com/Manuals/LaserMaintenanceSchedule.pdf for maintenance instructions.

Due to the delicate nature of the laser cutter, maintenance is to only be performed by trained members. Please do not attempt to clean or repair the machine without this one-on-one training and specific authorization. If you believe that the laser needs cleaning or other maintenance please send a message to info@tinkermill.org.

Lens Damage Examples[edit]

Lens Damage Examples

Focal Length Sensor Plunger[edit]

It is necessary to periodically clean the tip of the focal length sensor plunger. Because this plunger is used to set the focal distance of the laser, a build up of debris will cause this distance to be off enough to affect the quality of cuts and etchings. Focal length sensor - before after.png

Resources[edit]

Design Resources[edit]

Material Resources[edit]

Cool Videos[edit]

Back to: Main Page